REDUCTION OF 5,6-DIHYDRO-2*H*-1,3-OXAZINES. A SIMPLE APPROACH TO 1,3-AMINOALCOHOLS FROM 2-AZA-1,3-DIENES

José Barluenga,* Jesús Joglar, Francisco J. González, and Santos Fustero Departamento de Química Organometálica, Facultad de Química, Universidad de Oviedo, 33071-Oviedo, Spain

Summary: The reduction of 5,6-dihydro-2H-1,3-oxazines 2 is described for the first time. This reaction allows the diastereoselective synthesis of 1,3-amino alcohols 3 and 4 with three and four chiral centers.

1,3-Difunctionalized compounds, particularly those having the 1,3-amino alcohol structural unit, have attracted a great deal of attention because of their pharmacological properties and their utility as synthesis in natural products synthesis.¹

Simple 1,3-amino alcohols are in most cases prepared either from 1,3-amino carbonyl ²-or 1,3-oxy imino ³- compounds, or from alkenes via isoxazolines ^{1,4} or isoxazolidines.^{1,5} In this context, we have recently described a diastereo- and enantioselective synthesis of 1,3-amino alcohols by reduction of 4-amino-1-azadienes, via 1,3-amino ketones.⁶ Other strategies ⁷, *e.g.* opening of oxetanes with trimethylsilyl cyanide and intramolecular amido mercuration of homoallylic alcohols have been also recently described.

On the other hand, we have described a simple procedure for the preparation of 5,6-dihydro-2H-1,3-oxazines 2 from 2-aza-1,3-dienes 1 by [4+2]-cycloaddition processes ⁸(Scheme I).

Scheme I

While the reduction of isoxazolines and isoxazolidines has been studied in detail,^{1,4-5} the reduction of 5,6-dihydro-2*H*- 1,3-oxazines 2 has not yet been reported. We wish to report here our results on the stereoselective synthesis of 1,3-amino alcohols having three and four chiral centers by reduction of 2.⁸ Dissolved metals (Na / *i*-PrOH) and complex metal hydrides (LiAlH₄) were

used as reducing agents.

Thus, the treatment of 2 with Na / *i*-PrOH in THF at 25 $^{\circ}$ C for several hours, followed by acid hydrolysis (4N HCl) of the crude mixture, led in nearly quantitative yields to 1,3-amino alcohols 3 as a mixture of **A**, and **B** diastereoisomers ⁹ (Scheme II, Table 1). Although the change of co-solvent from *i*-PrOH to EtOH or *t*-BuOH did not lead to appreciable variations in the selectivity, from Table 1 it can be seen that the temperature does influence the diastereoisomer ratio. A lowering in the temperature increases slightly the relative amount of 3A. Finally, it is worth noting that this procedure complements the one previously reported, ⁶ in which the 3A isomer was not formed at all.

Scheme II

Table 1. 1,3-Amino Alcohols 3 and 4 obtained by reduction of 5,6-dihydro-2H- 1,3-oxazines 2.

Compd. ^a	R ²	R ³	Yield (% 3) ^b	3A /3B °	Yield (% 4) ^d	4C / 4C' °
a	Me	Ph	99	61 / 39 (76 / 24) ^e	95	90 / 10
b	Me	2-Thienyl	100	59 / 41	93	87 / 13
c	Me	PhCH(Me) ^f	98	60 / 40	90	81 / 19
d	Et	Ph	97	65 / 35	98	89 / 11

^a R¹=Ph; ^b Reduction with Na / *i*-PrOH / THF / 25 °C; ^c By ¹H and ¹³C NMR of the crude residue (estimated error $\leq \pm 2$); ^d Reduction LiAlH₄ / THF / reflux; ^e Reduction with Na / *i*-PrOH / THF / -30 °C; ^f Only a single diastereomer (Cram adduct) was isolated in the preparation of 2c (see ref. 8).

On the other hand, $LiAlH_4$ reduction of 2 in THF at reflux for several hours (24-48 h) resulted in the formation of N-alkylated 1,3-amino alcohols 4 in nearly quantitative yields (Scheme III, Table 1). Among the four possible diastereoisomers, only the epimers 4C and 4C'-ratio 4C / 4C': ~9 / 1, table 1- could be detected in the crude mixture. Isolation and purification of the major isomer $4C^{10}$ was usually achieved by crystallization of either the aminoalcohol mixture or the tetrahydro-1,3-oxazines 5⁹ obtained by condensation with CH₂O (Scheme III).

Scheme III

The stereochemical relationship between C-1, C-2, and C-3 on 4C and 4C' was based on ¹H and ¹³C NMR data.⁹ On the other hand, the relative configuration of C-4 was confirmed by an X-Ray structural analysis of 5a ($R^1=R^3=Ph$; $R^2=Me$).¹¹

The stereochemical results shown for the $LiAlH_4$ -reduction of 2 can be explained by initial addition of hydride to the carbon of carbon-nitrogen double bond from the less hindered face (Fig. 1), which in fact led to a degree of stereoselectivity higher than 98%; further hydride transfer, presumably from a ring-open tautomer, would take place through the rigid, cyclic alkoxyaluminate transition state depicted in Fig. 2.

Fig. 2

In conclusion, the reduction of 5,6-dihydro-2H-1,3-oxazines 2 has been studied for the first time. The process allows the diastereoselective, high-yield preparation of 1,3-amino alcohols with three 3, and four 4 chiral centers.

References and notes

- (a) W. Schwab and V. Jäger, Angew. Chem., Int. Ed. Engl., 1981,20, 603; (b) P.M. Wovkulich and M.R.
 Uskokovic, J. Am. Chem. Soc., 1981, 103, 3956; (c) P.N. Confalone, E.D. Lollar, G. Pizzolato, and M.R. Uskokovic, J. Am. Chem. Soc., 1978, 100, 6291; (d) P.N. Confalone, G. Pizzolato, and M.R. Uskokovic J. Am. Chem. Soc., 1980, 102, 1954; (e) Y-F. Wang, T. Izawa, S. Kobayashi, and M. Ohno, J. Am. Chem. Soc., 1982, 104, 6465; (f) M. Ohno, S. Kobayashi, T. Izawa, and Y-F. Wang, J. Chem. Soc., Chem. & Ind. Chem., 1983, 12, 99; (g) H. Hahn, H. Heitsch, R. Rathmann, G. Zimmermann, Ch. Bormann, H. Zähner, and W.A. König, Liebigs Ann. Chem., 1987, 803 and references cited therein.
- 2. M. Tramontini, Synthesis, 1982, 605.
- 3. (a) K. Narasaka and Y. Ukaji, Chem. Lett., 1984,147; (b) Y. Yamamoto, T. Komatsu and K. Maruyama, J. Chem. Soc. Chem. Commun., 1985, 814.
- 4. (a) V. Jäger and V. Buss, Liebigs Ann. Chem., 1980, 101; (b) V. Jäger, V. Buss and W. Schwab, *ibid.*, 1980, 122 and references cited therein.
- 5. J. Mulzer, Nach. Chem. Tech. Lab., 1984, 32, 882.
- (a) J. Barluenga, B. Olano and S. Fustero, J. Org. Chem., 1985, 50, 4052;
 (b) J. Barluenga, B. Olano, S. Fustero, M⁴ C. Foces-Foces, F. Hernández, J. Chem. Soc. Chem. Commun., 1988, 410.
- (a) P.G. Gassman and L.M. Haberman, *Tetrahedron Lett.*, 1985, 26, 4971; (b) K.E. Harding, T.H. Marman, and D. Nam, *Tetrahedron*, 1988, 44, 5605.
- 8. J. Barluenga, J. Joglar, S. Fustero, V. Gotor, C. Krüger, and M.J. Romão, Chem. Ber., 1985, 118, 3652.
- 9. Satisfactory ¹H, ¹³C NMR and Mass Spectra were obtained for all new 1,3-amino alcohols 3 and 4. For example, 3Aa and 3Ab (see ref. 6a). 3Ad (Data taken of crude mixture): ¹H NMR (DCCl₃) δ 0.10 (t, 3H), 1.10 (m,1H), 1.30 (m, 1H), 1.90 (m, 1H), 3.20 (m, 2H, exchangeable with D₂O), 4.31 (d, 1H, J=3.2 Hz), 5.13 (d, 1H, J=2.2 Hz), 7.1-7.6 (m, 10H); ¹³C NMR (DCCl₃) δ 144.9 (s), 143.7 (s), 128.5 -125.4 (m), 77.5 (d), 59.7 (d), 52.8 (d), 14.4 (q), 13.7 (t); MS *m/z* 237 (M⁺-18). 3Bd (Data taken of crude mixture) : ¹H NMR (DCCl₃) δ 0.80 (t, 3H), 1.40 (m, 1H), 1.50 (m, 1H), 1.70 (m, 1H), 3.20 (m, 2H, exchangeable with D₂O), 4.30 (d, 1H, J=8 Hz), 4.83 (d, 1H, J=2.21 Hz), 7.1-7.6 (m, 10H); ¹³C NMR (DCCl₃) δ 143.8 (s), 143.2 (s), 128.5 125.4 (s), 72.6 (d), 55.9 (d), 51.9 (d), 17.4 (t), 12.0 (q).

4Ca (oil): ¹H NMR (DCCl₃) δ 0.51 (d, 3H), 0.67 (t, 3H), 1.70-1.85 and 1.97-2.12 (m, 3H), 3.40 (dd, 1H, J = 3.9 and 9.6 Hz), 4.53 (d, 1H, J = 2.7 Hz), 5.37 (d, 1H, J = 2.0 Hz), 6.80-7.90 (m, 15H); ¹³C NMR (DCCl₃) δ 3.0 (q), 8.5 (q), 27.4 (t), 46.0 (d), 61.8 (d), 64.2 (d), 78.0 (d), 123.5-129.7 (m), 140.5 (s), 143.2 (s), 143.8 (s); MS m/z 359 (M⁺). 4Cb (m.p. 105-7°C): ¹H NMR (DCCl₃) δ 0.64 (d, 3H), 0.65 (t, 3H), 1.70-1.90 and 1.97-2.20 (m, 3H), 3.37 (dd, 1H, J = 3.7 and 9.5 Hz), 4.49 (d, 1H, J = 2.5 Hz), 5.62 (dd, 1H, J = 1.2 and 2.0 Hz), 6.80-7.40 (m, 13H); ¹³C NMR (DCCl₃) δ 4.3 (q), 9.8 (q), 27.7 (t), 46.3 (d), 61.3 (d), 64.2 (d), 75.5 (d), 121.5-128.2 (m), 140.5 (s), 142.8 (s), 147.8 (s); MS m/z 365 (M⁺). **5a** (m.p.120-2°C): ¹H NMR (DCCl₃) δ 1.13 (t, 3H), 1.20 (d, 3H), 2.17-2.67 (m, 3H), 4.40 (dd, 1H), 4.80 (d, 1H, J = 3.0 Hz), 4.90 (d, 1H, J = 10.0 Hz), 5.20 (d, 1H, J = 10.0 Hz), 5.33 (d, 1H, J = 3.0 Hz), 7.67-8.17 (m, 15H); ¹³C NMR (DCCl₃) δ 7.7 (q), 12.4 (q), 17.1 (t), 41.6 (d), 60.9 (d), 68.7 (d), 81.1 (t), 83.1 (d), 125.3-129.1 (m), 140.6 (s), 141.1 (s), 141.4 (s); MS m/z 371 (M⁺).

- 10. The minor isomer 4C' was never isolated.
- 11. The X-Ray analysis was performed by: C. Krüger and Y.-H. Tsay, Max-Planck-Institut für Kohlenforschung, Mülheim a.d. Ruhr, West Germany. Further details will be published elsewhere.

(Received in UK 21 February 1989)